

Synthesis of Pyridylglyoxylic Acid Derivatives via a Palladium-Catalysed Double Carbonylation of Iodopyridines

Samuel Couve-Bonnaire, Jean-François Carpentier,* Yves Castanet* and André Mortreux

Laboratoire de Catalyse associé au CNRS, Groupe de Chimie Organique Appliquée, Ecole Nationale Supérieure de Chimie de Lille, B.P. 108 - 59652 Villeneuve d'Asoq, France

Received 23 February 1999; accepted 16 March 1999

Abstract: 4-Iodopyridines react with CO and HNEt₂ or 2-BuOH/NEt₃ in the presence of a catalytic amount of PdCl₂(PPh₃)₂ to give the corresponding α-keto amides and esters in fair to high yields. © 1999 Elsevier Science Ltd. All rights reserved.

The palladium-catalysed double carbonylation of aryl halides to give α-keto acids, esters and amides has been extensively studied.¹ There have been however very few applications to the synthesis of fine chemicals.^{1c} In an ongoing project aimed at developing a new synthesis of camptothecine, we required compounds of type **D3**, which can be envisioned by double carbonylation of the parent iodo compound (**S3**). The scarce informations available about related reactions suggest poor efficiency.² We now report that such a double carbonylation of 4-iodopyridines provides an efficient entry to 4-pyridylglyoxylic acid derivatives, compounds which are not easily attainable via classical organic synthesis.

Table 1 summarises selected results of the reactions of two model iodopyridines and of S3³ under various conditions. α-Keto amides of 4-iodopyridines S1 and S3 are obtained in more than 90% yield under smooth conditions, provided temperature, CO pressure, amine concentration, catalyst precursor and solvent are adequately adjusted. A typical procedure is as follows (entry 5): a solution of S1 (0.50 g, 2.44 mmol), HNEt₂ (1.2 mL, 12 mmol), Pd(OAc)₂ (5.5 mg, 0.024 mmol) and PCy₃ (19.2 mg, 0.072 mmol) in CH₂Cl₂ (30 mL) was charged under nitrogen into a 60 mL-stainless steel autoclave equipped with a magnetic stirrer bar. After sealing, the reactor was pressurised to 60 bar with carbon monoxide and heated

^{*} email: carpentier@ensc-lille.fr; fax: +33 (0)320 436 585

to 50 °C for 6 h. After cooling to room temperature, the solution was analyzed by GLC, which showed that N,N-diethyl-4-pyridylglyoxylamide (D1a) had been formed in 95% yield along with N,N-diethyl-4-nicotamide (M1a) in 5% yield. After concentration of the solution under vacuum, the crude product was chromatographed on silica using EtOH/AcOEt/heptane (2:2:1) as eluent, to give the analytically pure glyoxylamide (0.45 g, 90% yield).⁴

 α -Keto esters of 4-iodopyridines S1 and S3 are also produced in moderate yields (entries 6 and 11), although it is noteworthy that "optimal" reaction conditions are much more narrow than for the synthesis of α -keto amides. The reactions of 2-iodopyridine (S2) are less selective (entries 7 and 8).

Entry	Subst.	NuH	catalyst precursor	T (° C)	Time ^a (h)	S conv (%) ^b	D sel (%)
1	S1	a	PdCl ₂ (PPh ₃) ₂	50	6	100	50
2	**	11	PdCl ₂ (PPhMe ₂) ₂	**	28	100	61
3	11	**	PdCl ₂ (PPh ₂ Me) ₂	111	30	25	>99
4	11	**	Pd(dba)(PCy ₃) ₂	11	6.5	100	93
5	11	**	$Pd(OAc)_2 + 3 PCy_3$	11	6	100	95 (90)
6c	**	b	Pd(dba)(PCy ₃) ₂	11	48	100	72 (60)
7	S 2	a	н	**	3.5	100	54
80	**	b	н	70	140	78	16
9	83	а	PdCl ₂ (PPh ₃) ₂	40	31	100	75
10	**	"	Pd(dba)(PCy ₃) ₂	**	20	98	93 (82)
11c	**	b	"	50	22	100	31

Table 1. Palladium-catalysed double carbonylation of iodopyridines S1-3

References and Notes

- Leading references: (a) Tanaka, M.; Kobayashi, T.-A.; Sakakura, T. J. Chem. Soc., Chem. Commun.
 1985, 837. (b) Sakakura, T.; Yamashita, H.; Kobayashi, T.-A.; Hayashi, T.; Tanaka, M. J. Org. Chem. 1987, 52, 5733. (c) Ozawa, F.; Yanagihara, H.; Yamamoto, A. J. Org. Chem. 1986, 51, 415.
- (a) Ketoamidocarbonylation of 3-bromopyridine proceeds in 58% yield and selectivity at total conversion: Ozawa, F.; Soyama, H.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1982, 23, 567.
 (b) The α-ketoester of 2-iodoquinoline is formed in 22% yield and selectivity: Ozawa, F.; Kawazaki, N.; Yamamoto, T.; Yamamoto, A. Chem. Lett. 1985, 567.
- 3. Comins, D. L.; Baevsky, M. F.; Hong, H. J. Am. Chem. Soc. 1992, 114, 10972.
- 4. All products were characterized by ${}^{1}H$ and ${}^{1}C\{{}^{1}H\}$ NMR, MS, IR and elemental analysis, and are consistent with the proposed structures. Selected data for D3a: ${}^{1}H$ NMR (CDCl₃): δ 7.37 (s, 1H), 4.50 (s, 2H), 3.92 (s, 3H), 3.40 (2q, J = 7 Hz, 2 × 2H), 3.23 (s, 3H), 1.25 (t, 3H, J = 7 Hz), 1.17 (t, 3H, J = 7 Hz). ${}^{13}C\{{}^{1}H\}$ NMR: δ 189.2, 163.6, 160.9, 147.9, 147.6, 117.9, 116.5, 65.8, 58.5, 54.7, 42.5, 40.3, 14.2, 12.4. MS (EI, 70 eV): 314 (M+, 4%), 214 (61%), 186 (18%), 100 (100%).

^a The reaction time was not optimised. ^b Determined by quantitative GLC; figures in brackets are isolated yields. Compound M accounts for the balance. ^c S (2.44 mmol), 2-BuOH (3 mL), NEt₃ (2 mL), Pd 2 mol%, CH₂Cl₂ (25 mL), 90 bar CO.